Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Crackle Detection In Lung Sounds Using Transfer Learning And Multi-Input Convolitional Neural Networks (2104.14921v1)

Published 30 Apr 2021 in eess.AS, cs.LG, and cs.SD

Abstract: Large annotated lung sound databases are publicly available and might be used to train algorithms for diagnosis systems. However, it might be a challenge to develop a well-performing algorithm for small non-public data, which have only a few subjects and show differences in recording devices and setup. In this paper, we use transfer learning to tackle the mismatch of the recording setup. This allows us to transfer knowledge from one dataset to another dataset for crackle detection in lung sounds. In particular, a single input convolutional neural network (CNN) model is pre-trained on a source domain using ICBHI 2017, the largest publicly available database of lung sounds. We use log-mel spectrogram features of respiratory cycles of lung sounds. The pre-trained network is used to build a multi-input CNN model, which shares the same network architecture for respiratory cycles and their corresponding respiratory phases. The multi-input model is then fine-tuned on the target domain of our self-collected lung sound database for classifying crackles and normal lung sounds. Our experimental results show significant performance improvements of 9.84% (absolute) in F-score on the target domain using the multi-input CNN model based on transfer learning for crackle detection in adventitious lung sound classification task.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.