Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Practical Approach for Rate-Distortion-Perception Analysis in Learned Image Compression (2104.14836v1)

Published 30 Apr 2021 in eess.IV

Abstract: Rate-distortion optimization (RDO) of codecs, where distortion is quantified by the mean-square error, has been a standard practice in image/video compression over the years. RDO serves well for optimization of codec performance for evaluation of the results in terms of PSNR. However, it is well known that the PSNR does not correlate well with perceptual evaluation of images; hence, RDO is not well suited for perceptual optimization of codecs. Recently, rate-distortion-perception trade-off has been formalized by taking the Kullback-Leibner (KL) divergence between the distributions of the original and reconstructed images as a perception measure. Learned image compression methods that simultaneously optimize rate, mean-square loss, VGG loss, and an adversarial loss were proposed. Yet, there exists no easy approach to fix the rate, distortion or perception at a desired level in a practical learned image compression solution to perform an analysis of the trade-off between rate, distortion and perception measures. In this paper, we propose a practical approach to fix the rate to carry out perception-distortion analysis at a fixed rate in order to perform perceptual evaluation of image compression results in a principled manner. Experimental results provide several insights for practical rate-distortion-perception analysis in learned image compression.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.