Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Refined Inertial DC Algorithm for DC Programming (2104.14750v2)

Published 30 Apr 2021 in math.OC and cs.CV

Abstract: In this paper we consider the difference-of-convex (DC) programming problems, whose objective function is the difference of two convex functions. The classical DC Algorithm (DCA) is well-known for solving this kind of problems, which generally returns a critical point. Recently, an inertial DC algorithm (InDCA) equipped with heavy-ball inertial-force procedure was proposed in de Oliveira et al. (Set-Valued and Variational Analysis 27(4):895--919, 2019), which potentially helps to improve both the convergence speed and the solution quality. Based on InDCA, we propose a refined inertial DC algorithm (RInDCA) equipped with enlarged inertial step-size compared with InDCA. Empirically, larger step-size accelerates the convergence. We demonstrate the subsequential convergence of our refined version to a critical point. In addition, by assuming the Kurdyka-{\L}ojasiewicz (KL) property of the objective function, we establish the sequential convergence of RInDCA. Numerical simulations on checking copositivity of matrices and image denoising problem show the benefit of larger step-size.

Citations (6)

Summary

We haven't generated a summary for this paper yet.