Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Cross-lingual hate speech detection based on multilingual domain-specific word embeddings (2104.14728v1)

Published 30 Apr 2021 in cs.CL and cs.AI

Abstract: Automatic hate speech detection in online social networks is an important open problem in NLP. Hate speech is a multidimensional issue, strongly dependant on language and cultural factors. Despite its relevance, research on this topic has been almost exclusively devoted to English. Most supervised learning resources, such as labeled datasets and NLP tools, have been created for this same language. Considering that a large portion of users worldwide speak in languages other than English, there is an important need for creating efficient approaches for multilingual hate speech detection. In this work we propose to address the problem of multilingual hate speech detection from the perspective of transfer learning. Our goal is to determine if knowledge from one particular language can be used to classify other language, and to determine effective ways to achieve this. We propose a hate specific data representation and evaluate its effectiveness against general-purpose universal representations most of which, unlike our proposed model, have been trained on massive amounts of data. We focus on a cross-lingual setting, in which one needs to classify hate speech in one language without having access to any labeled data for that language. We show that the use of our simple yet specific multilingual hate representations improves classification results. We explain this with a qualitative analysis showing that our specific representation is able to capture some common patterns in how hate speech presents itself in different languages. Our proposal constitutes, to the best of our knowledge, the first attempt for constructing multilingual specific-task representations. Despite its simplicity, our model outperformed the previous approaches for most of the experimental setups. Our findings can orient future solutions toward the use of domain-specific representations.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.