Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analytical bounds on the local Lipschitz constants of ReLU networks (2104.14672v1)

Published 29 Apr 2021 in cs.LG and stat.ML

Abstract: In this paper, we determine analytical upper bounds on the local Lipschitz constants of feedforward neural networks with ReLU activation functions. We do so by deriving Lipschitz constants and bounds for ReLU, affine-ReLU, and max pooling functions, and combining the results to determine a network-wide bound. Our method uses several insights to obtain tight bounds, such as keeping track of the zero elements of each layer, and analyzing the composition of affine and ReLU functions. Furthermore, we employ a careful computational approach which allows us to apply our method to large networks such as AlexNet and VGG-16. We present several examples using different networks, which show how our local Lipschitz bounds are tighter than the global Lipschitz bounds. We also show how our method can be applied to provide adversarial bounds for classification networks. These results show that our method produces the largest known bounds on minimum adversarial perturbations for large networks such as AlexNet and VGG-16.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube