Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Discontinuous Galerkin and $C^0$-IP finite element approximation of periodic Hamilton--Jacobi--Bellman--Isaacs problems with application to numerical homogenization (2104.14450v1)

Published 29 Apr 2021 in math.NA and cs.NA

Abstract: In the first part of the paper, we study the discontinuous Galerkin (DG) and $C0$ interior penalty ($C0$-IP) finite element approximation of the periodic strong solution to the fully nonlinear second-order Hamilton--Jacobi--BeLLMan--Isaacs (HJBI) equation with coefficients satisfying the Cordes condition. We prove well-posedness and perform abstract a posteriori and a priori analyses which apply to a wide family of numerical schemes. These periodic problems arise as the corrector problems in the homogenization of HJBI equations. The second part of the paper focuses on the numerical approximation to the effective Hamiltonian of ergodic HJBI operators via DG/$C0$-IP finite element approximations to approximate corrector problems. Finally, we provide numerical experiments demonstrating the performance of the numerical schemes.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.