Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Implementing Reinforcement Learning Algorithms in Retail Supply Chains with OpenAI Gym Toolkit (2104.14398v1)

Published 27 Apr 2021 in cs.LG and cs.AI

Abstract: From cutting costs to improving customer experience, forecasting is the crux of retail supply chain management (SCM) and the key to better supply chain performance. Several retailers are using AI/ML models to gather datasets and provide forecast guidance in applications such as Cognitive Demand Forecasting, Product End-of-Life, Forecasting, and Demand Integrated Product Flow. Early work in these areas looked at classical algorithms to improve on a gamut of challenges such as network flow and graphs. But the recent disruptions have made it critical for supply chains to have the resiliency to handle unexpected events. The biggest challenge lies in matching supply with demand. Reinforcement Learning (RL) with its ability to train systems to respond to unforeseen environments, is being increasingly adopted in SCM to improve forecast accuracy, solve supply chain optimization challenges, and train systems to respond to unforeseen circumstances. Companies like UPS and Amazon have developed RL algorithms to define winning AI strategies and keep up with rising consumer delivery expectations. While there are many ways to build RL algorithms for supply chain use cases, the OpenAI Gym toolkit is becoming the preferred choice because of the robust framework for event-driven simulations. This white paper explores the application of RL in supply chain forecasting and describes how to build suitable RL models and algorithms by using the OpenAI Gym toolkit.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube