Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum speedups for dynamic programming on $n$-dimensional lattice graphs (2104.14384v2)

Published 29 Apr 2021 in quant-ph and cs.CC

Abstract: Motivated by the quantum speedup for dynamic programming on the Boolean hypercube by Ambainis et al. (2019), we investigate which graphs admit a similar quantum advantage. In this paper, we examine a generalization of the Boolean hypercube graph, the $n$-dimensional lattice graph $Q(D,n)$ with vertices in ${0,1,\ldots,D}n$. We study the complexity of the following problem: given a subgraph $G$ of $Q(D,n)$ via query access to the edges, determine whether there is a path from $0n$ to $Dn$. While the classical query complexity is $\widetilde{\Theta}((D+1)n)$, we show a quantum algorithm with complexity $\widetilde O(T_Dn)$, where $T_D < D+1$. The first few values of $T_D$ are $T_1 \approx 1.817$, $T_2 \approx 2.660$, $T_3 \approx 3.529$, $T_4 \approx 4.421$, $T_5 \approx 5.332$. We also prove that $T_D \geq \frac{D+1}{\mathrm e}$, thus for general $D$, this algorithm does not provide, for example, a speedup, polynomial in the size of the lattice. While the presented quantum algorithm is a natural generalization of the known quantum algorithm for $D=1$ by Ambainis et al., the analysis of complexity is rather complicated. For the precise analysis, we use the saddle-point method, which is a common tool in analytic combinatorics, but has not been widely used in this field. We then show an implementation of this algorithm with time complexity $\text{poly}(n){\log n} T_Dn$, and apply it to the Set Multicover problem. In this problem, $m$ subsets of $[n]$ are given, and the task is to find the smallest number of these subsets that cover each element of $[n]$ at least $D$ times. While the time complexity of the best known classical algorithm is $O(m(D+1)n)$, the time complexity of our quantum algorithm is $\text{poly}(m,n){\log n} T_Dn$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.