Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Smartphone based Application for Skin Cancer Classification Using Deep Learning with Clinical Images and Lesion Information (2104.14353v1)

Published 28 Apr 2021 in eess.IV and cs.CV

Abstract: Over the last decades, the incidence of skin cancer, melanoma and non-melanoma, has increased at a continuous rate. In particular for melanoma, the deadliest type of skin cancer, early detection is important to increase patient prognosis. Recently, deep neural networks (DNNs) have become viable to deal with skin cancer detection. In this work, we present a smartphone-based application to assist on skin cancer detection. This application is based on a Convolutional Neural Network(CNN) trained on clinical images and patients demographics, both collected from smartphones. Also, as skin cancer datasets are imbalanced, we present an approach, based on the mutation operator of Differential Evolution (DE) algorithm, to balance data. In this sense, beyond provides a flexible tool to assist doctors on skin cancer screening phase, the method obtains promising results with a balanced accuracy of 85% and a recall of 96%.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.