Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Serial vs. Parallel Turbo-Autoencoders and Accelerated Training for Learned Channel Codes (2104.14234v2)

Published 29 Apr 2021 in cs.IT and math.IT

Abstract: Attracted by its scalability towards practical codeword lengths, we revisit the idea of Turbo-autoencoders for end-to-end learning of PHY-Layer communications. For this, we study the existing concepts of Turbo-autoencoders from the literature and compare the concept with state-of-the-art classical coding schemes. We propose a new component-wise training algorithm based on the idea of Gaussian a priori distributions that reduces the overall training time by almost a magnitude. Further, we propose a new serial architecture inspired by classical serially concatenated Turbo code structures and show that a carefully optimized interface between the two component autoencoders is required. To the best of our knowledge, these serial Turbo autoencoder structures are the best known neural network based learned sequences that can be trained from scratch without any required expert knowledge in the domain of channel codes.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.