Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic preserving schemes for SDEs driven by fractional Brownian motion in the averaging regime (2104.14198v1)

Published 29 Apr 2021 in math.PR, cs.NA, and math.NA

Abstract: We design numerical schemes for a class of slow-fast systems of stochastic differential equations, where the fast component is an Ornstein-Uhlenbeck process and the slow component is driven by a fractional Brownian motion with Hurst index $H>1/2$. We establish the asymptotic preserving property of the proposed scheme: when the time-scale parameter goes to $0$, a limiting scheme which is consistent with the averaged equation is obtained. With this numerical analysis point of view, we thus illustrate the recently proved averaging result for the considered SDE systems and the main differences with the standard Wiener case.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.