Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Harmonized Regional Style Transfer and Manipulation for Facial Images (2104.14109v1)

Published 29 Apr 2021 in cs.MM

Abstract: Regional facial image synthesis conditioned on semantic mask has achieved great success using generative adversarial networks. However, the appearance of different regions may be inconsistent with each other when conducting regional image editing. In this paper, we focus on the problem of harmonized regional style transfer and manipulation for facial images. The proposed approach supports regional style transfer and manipulation at the same time. A multi-scale encoder and style mapping networks are proposed in our work. The encoder is responsible for extracting regional styles of real faces. Style mapping networks generate styles from random samples for all facial regions. As the key part of our work, we propose a multi-region style attention module to adapt the multiple regional style embeddings from a reference image to a target image for generating harmonious and plausible results. Furthermore, we propose a new metric "harmony score" and conduct experiments in a challenging setting: three widely used face datasets are involved and we test the model by transferring the regional facial appearance between datasets. Images in different datasets are usually quite different, which makes the inconsistency between target and reference regions more obvious. Results show that our model can generate reliable style transfer and multi-modal manipulation results compared with SOTAs. Furthermore, we show two face editing applications using the proposed approach.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.