Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Large Scale Prediction with Decision Trees (2104.13881v5)

Published 28 Apr 2021 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: This paper shows that decision trees constructed with Classification and Regression Trees (CART) and C4.5 methodology are consistent for regression and classification tasks, even when the number of predictor variables grows sub-exponentially with the sample size, under natural 0-norm and 1-norm sparsity constraints. The theory applies to a wide range of models, including (ordinary or logistic) additive regression models with component functions that are continuous, of bounded variation, or, more generally, Borel measurable. Consistency holds for arbitrary joint distributions of the predictor variables, thereby accommodating continuous, discrete, and/or dependent data. Finally, we show that these qualitative properties of individual trees are inherited by Breiman's random forests. A key step in the analysis is the establishment of an oracle inequality, which allows for a precise characterization of the goodness-of-fit and complexity tradeoff for a mis-specified model.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: