Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Selection and Aggregation of Conformal Prediction Sets (2104.13871v3)

Published 28 Apr 2021 in stat.ME

Abstract: Conformal prediction is a generic methodology for finite-sample valid distribution-free prediction. This technique has garnered a lot of attention in the literature partly because it can be applied with any machine learning algorithm that provides point predictions to yield valid prediction regions. Of course, the efficiency (width/volume) of the resulting prediction region depends on the performance of the machine learning algorithm. In the context of point prediction, several techniques (such as cross-validation) exist to select one of many machine learning algorithms for better performance. In contrast, such selection techniques are seldom discussed in the context of set prediction (or prediction regions). In this paper, we consider the problem of obtaining the smallest conformal prediction region given a family of machine learning algorithms. We provide two general-purpose selection algorithms and consider coverage as well as width properties of the final prediction region. The first selection method yields the smallest width prediction region among the family of conformal prediction regions for all sample sizes but only has an approximate coverage guarantee. The second selection method has a finite sample coverage guarantee but only attains close to the smallest width. The approximate optimal width property of the second method is quantified via an oracle inequality. As an illustration, we consider the use of aggregation of non-parametric regression estimators in the split conformal method with the absolute residual conformal score.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube