Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Faster 3-coloring of small-diameter graphs (2104.13860v1)

Published 28 Apr 2021 in cs.DS and cs.DM

Abstract: We study the 3-\textsc{Coloring} problem in graphs with small diameter. In 2013, Mertzios and Spirakis showed that for $n$-vertex diameter-2 graphs this problem can be solved in subexponential time $2{\mathcal{O}(\sqrt{n \log n})}$. Whether the problem can be solved in polynomial time remains a well-known open question in the area of algorithmic graphs theory. In this paper we present an algorithm that solves 3-\textsc{Coloring} in $n$-vertex diameter-2 graphs in time $2{\mathcal{O}(n{1/3} \log{2} n)}$. This is the first improvement upon the algorithm of Mertzios and Spirakis in the general case, i.e., without putting any further restrictions on the instance graph. In addition to standard branchings and reducing the problem to an instance of 2-\textsc{Sat}, the crucial building block of our algorithm is a combinatorial observation about 3-colorable diameter-2 graphs, which is proven using a probabilistic argument. As a side result, we show that 3-\textsc{Coloring} can be solved in time $2{\mathcal{O}( (n \log n){2/3})}$ in $n$-vertex diameter-3 graphs. We also generalize our algorithms to the problem of finding a list homomorphism from a small-diameter graph to a cycle.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube