Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Adversarial Training for Meta Reinforcement Learning (2104.13302v1)

Published 27 Apr 2021 in cs.LG and cs.AI

Abstract: Meta Reinforcement Learning (MRL) enables an agent to learn from a limited number of past trajectories and extrapolate to a new task. In this paper, we attempt to improve the robustness of MRL. We build upon model-agnostic meta-learning (MAML) and propose a novel method to generate adversarial samples for MRL by using Generative Adversarial Network (GAN). That allows us to enhance the robustness of MRL to adversal attacks by leveraging these attacks during meta training process.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.