Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A unified framework for Hamiltonian deep neural networks (2104.13166v1)

Published 27 Apr 2021 in cs.LG

Abstract: Training deep neural networks (DNNs) can be difficult due to the occurrence of vanishing/exploding gradients during weight optimization. To avoid this problem, we propose a class of DNNs stemming from the time discretization of Hamiltonian systems. The time-invariant version of the corresponding Hamiltonian models enjoys marginal stability, a property that, as shown in previous works and for specific DNNs architectures, can mitigate convergence to zero or divergence of gradients. In the present paper, we formally study this feature by deriving and analysing the backward gradient dynamics in continuous time. The proposed Hamiltonian framework, besides encompassing existing networks inspired by marginally stable ODEs, allows one to derive new and more expressive architectures. The good performance of the novel DNNs is demonstrated on benchmark classification problems, including digit recognition using the MNIST dataset.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.