Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Real-time safety assessment of trajectories for autonomous driving (2104.13149v2)

Published 27 Apr 2021 in cs.RO

Abstract: Autonomous vehicles (AVs) must always have a safe motion to guarantee that they are not causing any accidents. In an AV system, the motion of the vehicle is represented as a trajectory. A trajectory planning component is responsible to compute such a trajectory at run-time, taking into account the perception information about the environment, the dynamics of the vehicles, the predicted future states of other road users and a number of safety aspects. Due to the enormous amount of information to be considered, trajectory planning algorithms are complex, which makes it non-trivial to guarantee the safety of all planned trajectories. In this way, it is necessary to have an extra component to assess the safety of the planned trajectories at run-time. Such trajectory safety assessment component gives a diverse observation on the safety of AV trajectories and ensures that the AV only follows safe trajectories. We use the term trajectory checker to refer to the trajectory safety assessment component. The trajectory checker must evaluate planned trajectories against various safety rules, taking into account a large number of possibilities, including the worst-case behavior of other traffic participants. This must be done while guaranteeing hard real-time performance since the safety assessment is carried out while the vehicle is moving and in constant interaction with the environment. In this paper, we present a prototype of the trajectory checker we have developed at IVEX. We show how our approach works smoothly and accomplishes real-time constraints embedded in an Infineon Aurix TC397B automotive platform. Finally, we measure the performance of our trajectory checker prototype against a set of NCAPS-inspired scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.