Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Three-stream network for enriched Action Recognition (2104.13051v2)

Published 27 Apr 2021 in cs.CV

Abstract: Understanding accurate information on human behaviours is one of the most important tasks in machine intelligence. Human Activity Recognition that aims to understand human activities from a video is a challenging task due to various problems including background, camera motion and dataset variations. This paper proposes two CNN based architectures with three streams which allow the model to exploit the dataset under different settings. The three pathways are differentiated in frame rates. The single pathway, operates at a single frame rate captures spatial information, the slow pathway operates at low frame rates captures the spatial information and the fast pathway operates at high frame rates that capture fine temporal information. Post CNN encoders, we add bidirectional LSTM and attention heads respectively to capture the context and temporal features. By experimenting with various algorithms on UCF-101, Kinetics-600 and AVA dataset, we observe that the proposed models achieve state-of-art performance for human action recognition task.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)