Papers
Topics
Authors
Recent
2000 character limit reached

Several classes of PcN power functions over finite fields (2104.12942v1)

Published 27 Apr 2021 in cs.IT and math.IT

Abstract: Recently, a new concept called multiplicative differential cryptanalysis and the corresponding $c$-differential uniformity were introduced by Ellingsen et al.~\cite{Ellingsen2020}, and then some low differential uniformity functions were constructed. In this paper, we further study the constructions of perfect $c$-nonlinear (PcN) power functions. First, we give a necessary and sufficient condition for the Gold function to be PcN and a conjecture on all power functions to be PcN over $\gf(2m)$. Second, several classes of PcN power functions are obtained over finite fields of odd characteristic for $c=-1$ and our theorems generalize some results in~\cite{Bartoli,Hasan,Zha2020}. Finally, the $c$-differential spectrum of a class of almost perfect $c$-nonlinear (APcN) power functions is determined.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.