Semi-Decentralized Federated Edge Learning for Fast Convergence on Non-IID Data (2104.12678v6)
Abstract: Federated edge learning (FEEL) has emerged as an effective approach to reduce the large communication latency in Cloud-based machine learning solutions, while preserving data privacy. Unfortunately, the learning performance of FEEL may be compromised due to limited training data in a single edge cluster. In this paper, we investigate a novel framework of FEEL, namely semi-decentralized federated edge learning (SD-FEEL). By allowing model aggregation across different edge clusters, SD-FEEL enjoys the benefit of FEEL in reducing the training latency, while improving the learning performance by accessing richer training data from multiple edge clusters. A training algorithm for SD-FEEL with three main procedures in each round is presented, including local model updates, intra-cluster and inter-cluster model aggregations, which is proved to converge on non-independent and identically distributed (non-IID) data. We also characterize the interplay between the network topology of the edge servers and the communication overhead of inter-cluster model aggregation on the training performance. Experiment results corroborate our analysis and demonstrate the effectiveness of SD-FFEL in achieving faster convergence than traditional federated learning architectures. Besides, guidelines on choosing critical hyper-parameters of the training algorithm are also provided.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.