Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Understanding and Accelerating EM Algorithm's Convergence by Fair Competition Principle and Rate-Verisimilitude Function (2104.12592v1)

Published 21 Apr 2021 in cs.LG and cs.AI

Abstract: Why can the Expectation-Maximization (EM) algorithm for mixture models converge? Why can different initial parameters cause various convergence difficulties? The Q-L synchronization theory explains that the observed data log-likelihood L and the complete data log-likelihood Q are positively correlated; we can achieve maximum L by maximizing Q. According to this theory, the Deterministic Annealing EM (DAEM) algorithm's authors make great efforts to eliminate locally maximal Q for avoiding L's local convergence. However, this paper proves that in some cases, Q may and should decrease for L to increase; slow or local convergence exists only because of small samples and unfair competition. This paper uses marriage competition to explain different convergence difficulties and proposes the Fair Competition Principle (FCP) with an initialization map for improving initializations. It uses the rate-verisimilitude function, extended from the rate-distortion function, to explain the convergence of the EM and improved EM algorithms. This convergence proof adopts variational and iterative methods that Shannon et al. used for analyzing rate-distortion functions. The initialization map can vastly save both algorithms' running times for binary Gaussian mixtures. The FCP and the initialization map are useful for complicated mixtures but not sufficient; we need further studies for specific methods.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)