Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dense Point Prediction: A Simple Baseline for Crowd Counting and Localization (2104.12505v1)

Published 26 Apr 2021 in cs.CV

Abstract: In this paper, we propose a simple yet effective crowd counting and localization network named SCALNet. Unlike most existing works that separate the counting and localization tasks, we consider those tasks as a pixel-wise dense prediction problem and integrate them into an end-to-end framework. Specifically, for crowd counting, we adopt a counting head supervised by the Mean Square Error (MSE) loss. For crowd localization, the key insight is to recognize the keypoint of people, i.e., the center point of heads. We propose a localization head to distinguish dense crowds trained by two loss functions, i.e., Negative-Suppressed Focal (NSF) loss and False-Positive (FP) loss, which balances the positive/negative examples and handles the false-positive predictions. Experiments on the recent and large-scale benchmark, NWPU-Crowd, show that our approach outperforms the state-of-the-art methods by more than 5% and 10% improvement in crowd localization and counting tasks, respectively. The code is publicly available at https://github.com/WangyiNTU/SCALNet.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com