Papers
Topics
Authors
Recent
2000 character limit reached

Powered Dirichlet Process for Controlling the Importance of "Rich-Get-Richer" Prior Assumptions in Bayesian Clustering (2104.12485v1)

Published 26 Apr 2021 in cs.LG and cs.DM

Abstract: One of the most used priors in Bayesian clustering is the Dirichlet prior. It can be expressed as a Chinese Restaurant Process. This process allows nonparametric estimation of the number of clusters when partitioning datasets. Its key feature is the "rich-get-richer" property, which assumes a cluster has an a priori probability to get chosen linearly dependent on population. In this paper, we show that such prior is not always the best choice to model data. We derive the Powered Chinese Restaurant process from a modified version of the Dirichlet-Multinomial distribution to answer this problem. We then develop some of its fundamental properties (expected number of clusters, convergence). Unlike state-of-the-art efforts in this direction, this new formulation allows for direct control of the importance of the "rich-get-richer" prior.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.