Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bijective proofs for Eulerian numbers of types B and D (2104.12445v4)

Published 26 Apr 2021 in cs.LO and math.LO

Abstract: Let $\Bigl\langle\matrix{n\cr k}\Bigr\rangle$, $\Bigl\langle\matrix{B_n\cr k}\Bigr\rangle$, and $\Bigl\langle\matrix{D_n\cr k}\Bigr\rangle$ be the Eulerian numbers in the types A, B, and D, respectively -- that is, the number of permutations of n elements with $k$ descents, the number of signed permutations (of $n$ elements) with $k$ type B descents, the number of even signed permutations (of $n$ elements) with $k$ type D descents. Let $S_n(t) = \sum_{k = 0}{n-1} \Bigl\langle\matrix{n\cr k}\Bigr\rangle tk$, $B_n(t) = \sum_{k = 0}n \Bigl\langle\matrix{B_n\cr k}\Bigr\rangle tk$, and $D_n(t) = \sum_{k = 0}n \Bigl\langle\matrix{D_n\cr k}\Bigr\rangle tk$. We give bijective proofs of the identity $$B_n(t2) = (1 + t){n+1}S_n(t) - 2n tS_n(t2)$$ and of Stembridge's identity $$D_n(t) = B_n(t) - n2{n-1}tS_{n-1}(t).$$ These bijective proofs rely on a representation of signed permutations as paths. Using this representation we also establish a bijective correspondence between even signed permutations and pairs $(w, E)$ with $([n], E)$ a threshold graph and $w$ a degree ordering of $([n], E)$, which we use to obtain bijective proofs of enumerative results for threshold graphs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)