Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Finite sample approximations of exact and entropic Wasserstein distances between covariance operators and Gaussian processes (2104.12368v1)

Published 26 Apr 2021 in stat.ML and cs.LG

Abstract: This work studies finite sample approximations of the exact and entropic regularized Wasserstein distances between centered Gaussian processes and, more generally, covariance operators of functional random processes. We first show that these distances/divergences are fully represented by reproducing kernel Hilbert space (RKHS) covariance and cross-covariance operators associated with the corresponding covariance functions. Using this representation, we show that the Sinkhorn divergence between two centered Gaussian processes can be consistently and efficiently estimated from the divergence between their corresponding normalized finite-dimensional covariance matrices, or alternatively, their sample covariance operators. Consequently, this leads to a consistent and efficient algorithm for estimating the Sinkhorn divergence from finite samples generated by the two processes. For a fixed regularization parameter, the convergence rates are {\it dimension-independent} and of the same order as those for the Hilbert-Schmidt distance. If at least one of the RKHS is finite-dimensional, we obtain a {\it dimension-dependent} sample complexity for the exact Wasserstein distance between the Gaussian processes.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)