Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Latent Graph Dynamics for Visual Manipulation of Deformable Objects (2104.12149v2)

Published 25 Apr 2021 in cs.RO and cs.LG

Abstract: Manipulating deformable objects, such as ropes and clothing, is a long-standing challenge in robotics, because of their large degrees of freedom, complex non-linear dynamics, and self-occlusion in visual perception. The key difficulty is a suitable representation, rich enough to capture the object shape, dynamics for manipulation and yet simple enough to be estimated reliably from visual observations. This work aims to learn latent Graph dynamics for DefOrmable Object Manipulation (G-DOOM). G-DOOM approximates a deformable object as a sparse set of interacting keypoints, which are extracted automatically from images via unsupervised learning. It learns a graph neural network that captures abstractly the geometry and the interaction dynamics of the keypoints. To handle object self-occlusion, G-DOOM uses a recurrent neural network to track the keypoints over time and condition their interactions on the history. We then train the resulting recurrent graph dynamics model through contrastive learning in a high-fidelity simulator. For manipulation planning, G-DOOM reasons explicitly about the learned dynamics model through model-predictive control applied at each keypoint. Preliminary experiments of G-DOOM on a set of challenging rope and cloth manipulation tasks indicate strong performance, compared with state-of-the-art methods. Although trained in a simulator, G-DOOM transfers directly to a real robot for both rope and cloth manipulation.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.