Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improved Analysis and Rates for Variance Reduction under Without-replacement Sampling Orders (2104.12112v2)

Published 25 Apr 2021 in cs.LG and math.OC

Abstract: When applying a stochastic algorithm, one must choose an order to draw samples. The practical choices are without-replacement sampling orders, which are empirically faster and more cache-friendly than uniform-iid-sampling but often have inferior theoretical guarantees. Without-replacement sampling is well understood only for SGD without variance reduction. In this paper, we will improve the convergence analysis and rates of variance reduction under without-replacement sampling orders for composite finite-sum minimization. Our results are in two-folds. First, we develop a damped variant of Finito called Prox-DFinito and establish its convergence rates with random reshuffling, cyclic sampling, and shuffling-once, under both convex and strongly convex scenarios. These rates match full-batch gradient descent and are state-of-the-art compared to the existing results for without-replacement sampling with variance-reduction. Second, our analysis can gauge how the cyclic order will influence the rate of cyclic sampling and, thus, allows us to derive the optimal fixed ordering. In the highly data-heterogeneous scenario, Prox-DFinito with optimal cyclic sampling can attain a sample-size-independent convergence rate, which, to our knowledge, is the first result that can match with uniform-iid-sampling with variance reduction. We also propose a practical method to discover the optimal cyclic ordering numerically.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.