Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

One-Round Active Learning (2104.11843v2)

Published 23 Apr 2021 in cs.LG

Abstract: In this work, we initiate the study of one-round active learning, which aims to select a subset of unlabeled data points that achieve the highest model performance after being labeled with only the information from initially labeled data points. The challenge of directly applying existing data selection criteria to the one-round setting is that they are not indicative of model performance when available labeled data is limited. We address the challenge by explicitly modeling the dependence of model performance on the dataset. Specifically, we propose DULO, a data-driven framework for one-round active learning, wherein we learn a model to predict the model performance for a given dataset and then leverage this model to guide the selection of unlabeled data. Our results demonstrate that DULO leads to the state-of-the-art performance on various active learning benchmarks in the one-round setting.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.