Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Transitional Conditional Independence (2104.11547v2)

Published 23 Apr 2021 in math.ST, math.PR, stat.ML, stat.OT, and stat.TH

Abstract: We develope the framework of transitional conditional independence. For this we introduce transition probability spaces and transitional random variables. These constructions will generalize, strengthen and unify previous notions of (conditional) random variables and non-stochastic variables, (extended) stochastic conditional independence and some form of functional conditional independence. Transitional conditional independence is asymmetric in general and it will be shown that it satisfies all desired relevance relations in terms of left and right versions of the separoid rules, except symmetry, on standard, analytic and universal measurable spaces. As a preparation we prove a disintegration theorem for transition probabilities, i.e. the existence and essential uniqueness of (regular) conditional Markov kernels, on those spaces. Transitional conditional independence will be able to express classical statistical concepts like sufficiency, adequacy and ancillarity. As an application, we will then show how transitional conditional independence can be used to prove a directed global Markov property for causal graphical models that allow for non-stochastic input variables in strong generality. This will then also allow us to show the main rules of causal/do-calculus, relating observational and interventional distributions, in such measure theoretic generality.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: