Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Federated Double Deep Q-learning for Joint Delay and Energy Minimization in IoT networks (2104.11320v1)

Published 2 Apr 2021 in cs.NI and cs.LG

Abstract: In this paper, we propose a federated deep reinforcement learning framework to solve a multi-objective optimization problem, where we consider minimizing the expected long-term task completion delay and energy consumption of IoT devices. This is done by optimizing offloading decisions, computation resource allocation, and transmit power allocation. Since the formulated problem is a mixed-integer non-linear programming (MINLP), we first cast our problem as a multi-agent distributed deep reinforcement learning (DRL) problem and address it using double deep Q-network (DDQN), where the actions are offloading decisions. The immediate cost of each agent is calculated through solving either the transmit power optimization or local computation resource optimization, based on the selected offloading decisions (actions). Then, to enhance the learning speed of IoT devices (agents), we incorporate federated learning (FDL) at the end of each episode. FDL enhances the scalability of the proposed DRL framework, creates a context for cooperation between agents, and minimizes their privacy concerns. Our numerical results demonstrate the efficacy of our proposed federated DDQN framework in terms of learning speed compared to federated deep Q network (DQN) and non-federated DDQN algorithms. In addition, we investigate the impact of batch size, network layers, DDQN target network update frequency on the learning speed of the FDL.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube