Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

VeriMedi: Pill Identification using Proxy-based Deep Metric Learning and Exact Solution (2104.11231v1)

Published 22 Apr 2021 in cs.CV, cs.AI, cs.IT, cs.LG, and math.IT

Abstract: We present the system that we have developed for the identification and verification of pills using images that are taken by the VeriMedi device. The VeriMedi device is an Internet of Things device that takes pictures of a filled pill vial from the bottom of the vial and uses the solution that is presented in this research to identify the pills in the vials. The solution has two serially connected deep learning solutions which do segmentation and identification. The segmentation solution creates the masks for each pill in the vial image by using the Mask R-CNN model, then segments and crops the pills and blurs the background. After that, the segmented pill images are sent to the identification solution where a Deep Metric Learning model that is trained with Proxy Anchor Loss (PAL) function generates embedding vectors for each pill image. The generated embedding vectors are fed into a one-layer fully connected network that is trained with the exact solution to predict each single pill image. Then, the aggregation/verification function aggregates the multiple predictions coming from multiple single pill images and verifies the correctness of the final prediction with respect to predefined rules. Besides, we enhanced the PAL with a better proxy initialization that increased the performance of the models and let the model learn the new classes of images continually without retraining the model with the whole dataset. When the model that is trained with initial classes is retrained only with new classes, the accuracy of the model increases for both old and new classes. The identification solution that we have presented in this research can also be reused for other problem domains which require continual learning and/or Fine-Grained Visual Categorization.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.