Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pri3D: Can 3D Priors Help 2D Representation Learning? (2104.11225v3)

Published 22 Apr 2021 in cs.CV

Abstract: Recent advances in 3D perception have shown impressive progress in understanding geometric structures of 3Dshapes and even scenes. Inspired by these advances in geometric understanding, we aim to imbue image-based perception with representations learned under geometric constraints. We introduce an approach to learn view-invariant,geometry-aware representations for network pre-training, based on multi-view RGB-D data, that can then be effectively transferred to downstream 2D tasks. We propose to employ contrastive learning under both multi-view im-age constraints and image-geometry constraints to encode3D priors into learned 2D representations. This results not only in improvement over 2D-only representation learning on the image-based tasks of semantic segmentation, instance segmentation, and object detection on real-world in-door datasets, but moreover, provides significant improvement in the low data regime. We show a significant improvement of 6.0% on semantic segmentation on full data as well as 11.9% on 20% data against baselines on ScanNet.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.