Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Complex-valued reservoir computing for aspect classification and slope-angle estimation with low computational cost and high resolution in interferometric synthetic aperture radar (2104.11182v1)

Published 22 Apr 2021 in eess.SP and eess.IV

Abstract: Synthetic aperture radar (SAR) is widely used for ground surface classification since it utilizes information on vegetation and soil unavailable in optical observation. Image classification often employs convolutional neural networks. However, they have serious problems such as long learning time and resolution degradation in their convolution and pooling processes. In this paper, we propose complex-valued reservoir computing (CVRC) to deal with complex-valued images in interferometric SAR (InSAR). We classify InSAR image data by using CVRC successfully with a higher resolution and a lower computational cost, i.e., one-hundredth learning time and one-fifth classification time, than convolutional neural networks. We also conduct experiments on slope angle estimation. CVRC is found applicable to quantitative tasks dealing with continuous values as well as discrete classification tasks with a higher accuracy.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.