Papers
Topics
Authors
Recent
2000 character limit reached

Noise-Robust Deep Spiking Neural Networks with Temporal Information (2104.11169v1)

Published 22 Apr 2021 in cs.NE, cs.AI, and cs.LG

Abstract: Spiking neural networks (SNNs) have emerged as energy-efficient neural networks with temporal information. SNNs have shown a superior efficiency on neuromorphic devices, but the devices are susceptible to noise, which hinders them from being applied in real-world applications. Several studies have increased noise robustness, but most of them considered neither deep SNNs nor temporal information. In this paper, we investigate the effect of noise on deep SNNs with various neural coding methods and present a noise-robust deep SNN with temporal information. With the proposed methods, we have achieved a deep SNN that is efficient and robust to spike deletion and jitter.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.