Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The chromatic number of signed graphs with bounded maximum average degree (2104.11121v2)

Published 22 Apr 2021 in math.CO and cs.DM

Abstract: A signed graph is a simple graph with two types of edges: positive and negative edges. Switching a vertex $v$ of a signed graph corresponds to changing the type of each edge incident to $v$. A homomorphism from a signed graph $G$ to another signed graph $H$ is a mapping $\varphi: V(G) \rightarrow V(H)$ such that, after switching some of the vertices of $G$, $\varphi$ maps every edge of $G$ to an edge of $H$ of the same type. The chromatic number $\chi_s(G)$ of a signed graph $G$ is the order of a smallest signed graph $H$ such that there is a homomorphism from $G$ to $H$. The maximum average degree $mad(G)$ of a graph $G$ is the maximum of the average degrees of all the subgraphs of $G$. We denote $\mathcal{M}k$ the class of signed graphs with maximum average degree less than $k$ and $\mathcal{P}_g$ the class of planar signed graphs of girth at least $g$. We prove: $\chi_s(\mathcal{P}{7}) \le 5$, $\chi_s(\mathcal{M}{\frac{17}{5}}) \le 10$ which implies $\chi_s(\mathcal{P}{5}) \le 10$, $\chi_s(\mathcal{M}_{4-\frac{8}{q+3}}) \le q+1$ with $q$ a prime power congruent to 1 modulo 4.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube