Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction (2104.10907v1)

Published 22 Apr 2021 in cs.IR and cs.AI

Abstract: Click-Through Rate (CTR) prediction is a core task in nowadays commercial recommender systems. Feature crossing, as the mainline of research on CTR prediction, has shown a promising way to enhance predictive performance. Even though various models are able to learn feature interactions without manual feature engineering, they rarely attempt to individually learn representations for different feature structures. In particular, they mainly focus on the modeling of cross sparse features but neglect to specifically represent cross dense features. Motivated by this, we propose a novel Extreme Cross Network, abbreviated XCrossNet, which aims at learning dense and sparse feature interactions in an explicit manner. XCrossNet as a feature structure-oriented model leads to a more expressive representation and a more precise CTR prediction, which is not only explicit and interpretable, but also time-efficient and easy to implement. Experimental studies on Criteo Kaggle dataset show significant improvement of XCrossNet over state-of-the-art models on both effectiveness and efficiency.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.