Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Locomotor transitions in the potential energy landscape-dominated regime (2104.10685v2)

Published 21 Apr 2021 in physics.bio-ph, cs.SY, and eess.SY

Abstract: To traverse complex three-dimensional terrainwith large obstacles, animals and robots must transition across different modes. However, the most mechanistic understanding of terrestrial locomotion concerns how to generate and stabilize near-steady-state, single-mode locomotion (e.g. walk, run). We know little about how to use physical interaction to make robust locomotor transitions. Here, we review our progress towards filling this gap by discovering terradynamic principles of multi-legged locomotor transitions, using simplified model systems representing distinct challenges in complex three-dimensional terrain. Remarkably, general physical principles emerge across diverse model systems, by modelling locomotor-terrain interaction using a potential energy landscape approach. The animal and robots' stereotyped locomotor modes are constrained by physical interaction. Locomotor transitions are stochastic, destabilizing, barrier-crossing transitions on the landscape. They can be induced by feed-forward self-propulsion and are facilitated by feedbackcontrolled active adjustment. General physical principles and strategies from our systematic studies already advanced robot performance in simple model systems. Efforts remain to better understand the intelligence aspect of locomotor transitions and how to compose larger-scale potential energy landscapes of complex three-dimensional terrains from simple landscapes of abstracted challenges. This will elucidate how the neuromechanical control system mediates physical interaction to generate multi-pathway locomotor transitions and lead to advancements in biology, physics, robotics and dynamical systems theory.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.