Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

K-XLNet: A General Method for Combining Explicit Knowledge with Language Model Pretraining (2104.10649v2)

Published 25 Mar 2021 in cs.CL and cs.AI

Abstract: Though pre-trained LLMs such as Bert and XLNet, have rapidly advanced the state-of-the-art on many NLP tasks, they implicit semantics only relying on surface information between words in corpus. Intuitively, background knowledge influences the efficacy of understanding. Inspired by this common sense, we focus on improving model pretraining by leveraging explicit knowledge. Different from recent research that optimize pretraining model by knowledge masking strategies, we propose a simple but general method to combine explicit knowledge with pretraining. To be specific, we first match knowledge facts from knowledge graph (KG) and then add a knowledge injunction layer to transformer directly without changing its architecture. The present study seeks to find the direct impact of explicit knowledge on transformer per-training. We conduct experiments on various datasets for different downstream tasks. The experimental results show that solely by adding external knowledge to transformer can improve the learning performance on many NLP tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.