Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Acyclic, Star, and Injective Colouring: Bounding the Diameter (2104.10593v4)

Published 21 Apr 2021 in cs.DS, cs.CC, cs.DM, and math.CO

Abstract: We examine the effect of bounding the diameter for well-studied variants of the Colouring problem. A colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. The corresponding decision problems are Acyclic Colouring, Star Colouring and Injective Colouring. The last problem is also known as $L(1,1)$-Labelling and we also consider the framework of $L(a,b)$-Labelling. We prove a number of (almost-)complete complexity classifications. In particular, we show that for graphs of diameter at most $d$, Acyclic $3$-Colouring is polynomial-time solvable if $d\leq 2$ but NP-complete if $d\geq 4$, and Star $3$-Colouring is polynomial-time solvable if $d\leq 3$ but NP-complete for $d\geq 8$. As far as we are aware, Star $3$-Colouring is the first problem that exhibits a complexity jump for some $d\geq 3$. Our third main result is that $L(1,2)$-Labelling is NP-complete for graphs of diameter $2$; we relate the latter problem to a special case of Hamiltonian Path.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.