Discrete-continuous Action Space Policy Gradient-based Attention for Image-Text Matching (2104.10406v1)
Abstract: Image-text matching is an important multi-modal task with massive applications. It tries to match the image and the text with similar semantic information. Existing approaches do not explicitly transform the different modalities into a common space. Meanwhile, the attention mechanism which is widely used in image-text matching models does not have supervision. We propose a novel attention scheme which projects the image and text embedding into a common space and optimises the attention weights directly towards the evaluation metrics. The proposed attention scheme can be considered as a kind of supervised attention and requiring no additional annotations. It is trained via a novel Discrete-continuous action space policy gradient algorithm, which is more effective in modelling complex action space than previous continuous action space policy gradient. We evaluate the proposed methods on two widely-used benchmark datasets: Flickr30k and MS-COCO, outperforming the previous approaches by a large margin.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.