Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Discrete-continuous Action Space Policy Gradient-based Attention for Image-Text Matching (2104.10406v1)

Published 21 Apr 2021 in cs.CV

Abstract: Image-text matching is an important multi-modal task with massive applications. It tries to match the image and the text with similar semantic information. Existing approaches do not explicitly transform the different modalities into a common space. Meanwhile, the attention mechanism which is widely used in image-text matching models does not have supervision. We propose a novel attention scheme which projects the image and text embedding into a common space and optimises the attention weights directly towards the evaluation metrics. The proposed attention scheme can be considered as a kind of supervised attention and requiring no additional annotations. It is trained via a novel Discrete-continuous action space policy gradient algorithm, which is more effective in modelling complex action space than previous continuous action space policy gradient. We evaluate the proposed methods on two widely-used benchmark datasets: Flickr30k and MS-COCO, outperforming the previous approaches by a large margin.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)