Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Masked Federated Optimization (2104.10322v1)

Published 21 Apr 2021 in cs.LG

Abstract: Federated Averaging (FedAVG) has become the most popular federated learning algorithm due to its simplicity and low communication overhead. We use simple examples to show that FedAVG has the tendency to sew together the optima across the participating clients. These sewed optima exhibit poor generalization when used on a new client with new data distribution. Inspired by the invariance principles in (Arjovsky et al., 2019; Parascandolo et al., 2020), we focus on learning a model that is locally optimal across the different clients simultaneously. We propose a modification to FedAVG algorithm to include masked gradients (AND-mask from (Parascandolo et al., 2020)) across the clients and uses them to carry out an additional server model update. We show that this algorithm achieves better accuracy (out-of-distribution) than FedAVG, especially when the data is non-identically distributed across clients.

Citations (2)

Summary

We haven't generated a summary for this paper yet.