Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A cappella: Audio-visual Singing Voice Separation (2104.09946v3)

Published 20 Apr 2021 in cs.SD, cs.LG, and eess.AS

Abstract: The task of isolating a target singing voice in music videos has useful applications. In this work, we explore the single-channel singing voice separation problem from a multimodal perspective, by jointly learning from audio and visual modalities. To do so, we present Acappella, a dataset spanning around 46 hours of a cappella solo singing videos sourced from YouTube. We also propose an audio-visual convolutional network based on graphs which achieves state-of-the-art singing voice separation results on our dataset and compare it against its audio-only counterpart, U-Net, and a state-of-the-art audio-visual speech separation model. We evaluate the models in the following challenging setups: i) presence of overlapping voices in the audio mixtures, ii) the target voice set to lower volume levels in the mix, and iii) combination of i) and ii). The third one being the most challenging evaluation setup. We demonstrate that our model outperforms the baseline models in the singing voice separation task in the most challenging evaluation setup. The code, the pre-trained models, and the dataset are publicly available at https://ipcv.github.io/Acappella/able at https://ipcv.github.io/Acappella/

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Juan F. Montesinos (6 papers)
  2. Venkatesh S. Kadandale (4 papers)
  3. Gloria Haro (21 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub