Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A cappella: Audio-visual Singing Voice Separation (2104.09946v3)

Published 20 Apr 2021 in cs.SD, cs.LG, and eess.AS

Abstract: The task of isolating a target singing voice in music videos has useful applications. In this work, we explore the single-channel singing voice separation problem from a multimodal perspective, by jointly learning from audio and visual modalities. To do so, we present Acappella, a dataset spanning around 46 hours of a cappella solo singing videos sourced from YouTube. We also propose an audio-visual convolutional network based on graphs which achieves state-of-the-art singing voice separation results on our dataset and compare it against its audio-only counterpart, U-Net, and a state-of-the-art audio-visual speech separation model. We evaluate the models in the following challenging setups: i) presence of overlapping voices in the audio mixtures, ii) the target voice set to lower volume levels in the mix, and iii) combination of i) and ii). The third one being the most challenging evaluation setup. We demonstrate that our model outperforms the baseline models in the singing voice separation task in the most challenging evaluation setup. The code, the pre-trained models, and the dataset are publicly available at https://ipcv.github.io/Acappella/able at https://ipcv.github.io/Acappella/

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub