Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

HCMS: Hierarchical and Conditional Modality Selection for Efficient Video Recognition (2104.09760v3)

Published 20 Apr 2021 in cs.CV

Abstract: Videos are multimodal in nature. Conventional video recognition pipelines typically fuse multimodal features for improved performance. However, this is not only computationally expensive but also neglects the fact that different videos rely on different modalities for predictions. This paper introduces Hierarchical and Conditional Modality Selection (HCMS), a simple yet efficient multimodal learning framework for efficient video recognition. HCMS operates on a low-cost modality, i.e., audio clues, by default, and dynamically decides on-the-fly whether to use computationally-expensive modalities, including appearance and motion clues, on a per-input basis. This is achieved by the collaboration of three LSTMs that are organized in a hierarchical manner. In particular, LSTMs that operate on high-cost modalities contain a gating module, which takes as inputs lower-level features and historical information to adaptively determine whether to activate its corresponding modality; otherwise it simply reuses historical information. We conduct extensive experiments on two large-scale video benchmarks, FCVID and ActivityNet, and the results demonstrate the proposed approach can effectively explore multimodal information for improved classification performance while requiring much less computation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.