Papers
Topics
Authors
Recent
2000 character limit reached

ASFM-Net: Asymmetrical Siamese Feature Matching Network for Point Completion (2104.09587v3)

Published 19 Apr 2021 in cs.CV

Abstract: We tackle the problem of object completion from point clouds and propose a novel point cloud completion network employing an Asymmetrical Siamese Feature Matching strategy, termed as ASFM-Net. Specifically, the Siamese auto-encoder neural network is adopted to map the partial and complete input point cloud into a shared latent space, which can capture detailed shape prior. Then we design an iterative refinement unit to generate complete shapes with fine-grained details by integrating prior information. Experiments are conducted on the PCN dataset and the Completion3D benchmark, demonstrating the state-of-the-art performance of the proposed ASFM-Net. Our method achieves the 1st place in the leaderboard of Completion3D and outperforms existing methods with a large margin, about 12%. The codes and trained models are released publicly at https://github.com/Yan-Xia/ASFM-Net.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.