Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scalable and Adaptive Graph Neural Networks with Self-Label-Enhanced training (2104.09376v3)

Published 19 Apr 2021 in cs.LG and cs.AI

Abstract: It is hard to directly implement Graph Neural Networks (GNNs) on large scaled graphs. Besides of existed neighbor sampling techniques, scalable methods decoupling graph convolutions and other learnable transformations into preprocessing and post classifier allow normal minibatch training. By replacing redundant concatenation operation with attention mechanism in SIGN, we propose Scalable and Adaptive Graph Neural Networks (SAGN). SAGN can adaptively gather neighborhood information among different hops. To further improve scalable models on semi-supervised learning tasks, we propose Self-Label-Enhance (SLE) framework combining self-training approach and label propagation in depth. We add base model with a scalable node label module. Then we iteratively train models and enhance train set in several stages. To generate input of node label module, we directly apply label propagation based on one-hot encoded label vectors without inner random masking. We find out that empirically the label leakage has been effectively alleviated after graph convolutions. The hard pseudo labels in enhanced train set participate in label propagation with true labels. Experiments on both inductive and transductive datasets demonstrate that, compared with other sampling-based and sampling-free methods, SAGN achieves better or comparable results and SLE can further improve performance.

Citations (65)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.