Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Forecasting COVID-19 Counts At A Single Hospital: A Hierarchical Bayesian Approach (2104.09327v1)

Published 14 Apr 2021 in stat.ML and cs.LG

Abstract: We consider the problem of forecasting the daily number of hospitalized COVID-19 patients at a single hospital site, in order to help administrators with logistics and planning. We develop several candidate hierarchical Bayesian models which directly capture the count nature of data via a generalized Poisson likelihood, model time-series dependencies via autoregressive and Gaussian process latent processes, and share statistical strength across related sites. We demonstrate our approach on public datasets for 8 hospitals in Massachusetts, U.S.A. and 10 hospitals in the United Kingdom. Further prospective evaluation compares our approach favorably to baselines currently used by stakeholders at 3 related hospitals to forecast 2-week-ahead demand by rescaling state-level forecasts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.