Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forecasting COVID-19 Counts At A Single Hospital: A Hierarchical Bayesian Approach (2104.09327v1)

Published 14 Apr 2021 in stat.ML and cs.LG

Abstract: We consider the problem of forecasting the daily number of hospitalized COVID-19 patients at a single hospital site, in order to help administrators with logistics and planning. We develop several candidate hierarchical Bayesian models which directly capture the count nature of data via a generalized Poisson likelihood, model time-series dependencies via autoregressive and Gaussian process latent processes, and share statistical strength across related sites. We demonstrate our approach on public datasets for 8 hospitals in Massachusetts, U.S.A. and 10 hospitals in the United Kingdom. Further prospective evaluation compares our approach favorably to baselines currently used by stakeholders at 3 related hospitals to forecast 2-week-ahead demand by rescaling state-level forecasts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.