Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Removing Adversarial Noise in Class Activation Feature Space (2104.09197v1)

Published 19 Apr 2021 in cs.LG

Abstract: Deep neural networks (DNNs) are vulnerable to adversarial noise. Preprocessing based defenses could largely remove adversarial noise by processing inputs. However, they are typically affected by the error amplification effect, especially in the front of continuously evolving attacks. To solve this problem, in this paper, we propose to remove adversarial noise by implementing a self-supervised adversarial training mechanism in a class activation feature space. To be specific, we first maximize the disruptions to class activation features of natural examples to craft adversarial examples. Then, we train a denoising model to minimize the distances between the adversarial examples and the natural examples in the class activation feature space. Empirical evaluations demonstrate that our method could significantly enhance adversarial robustness in comparison to previous state-of-the-art approaches, especially against unseen adversarial attacks and adaptive attacks.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.