Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Non-asymptotic model selection in block-diagonal mixture of polynomial experts models (2104.08959v2)

Published 18 Apr 2021 in math.ST, cs.AI, cs.LG, stat.ME, stat.ML, and stat.TH

Abstract: Model selection, via penalized likelihood type criteria, is a standard task in many statistical inference and machine learning problems. Progress has led to deriving criteria with asymptotic consistency results and an increasing emphasis on introducing non-asymptotic criteria. We focus on the problem of modeling non-linear relationships in regression data with potential hidden graph-structured interactions between the high-dimensional predictors, within the mixture of experts modeling framework. In order to deal with such a complex situation, we investigate a block-diagonal localized mixture of polynomial experts (BLoMPE) regression model, which is constructed upon an inverse regression and block-diagonal structures of the Gaussian expert covariance matrices. We introduce a penalized maximum likelihood selection criterion to estimate the unknown conditional density of the regression model. This model selection criterion allows us to handle the challenging problem of inferring the number of mixture components, the degree of polynomial mean functions, and the hidden block-diagonal structures of the covariance matrices, which reduces the number of parameters to be estimated and leads to a trade-off between complexity and sparsity in the model. In particular, we provide a strong theoretical guarantee: a finite-sample oracle inequality satisfied by the penalized maximum likelihood estimator with a Jensen-Kullback-Leibler type loss, to support the introduced non-asymptotic model selection criterion. The penalty shape of this criterion depends on the complexity of the considered random subcollection of BLoMPE models, including the relevant graph structures, the degree of polynomial mean functions, and the number of mixture components.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube