Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Group-Sparse Matrix Factorization for Transfer Learning of Word Embeddings (2104.08928v3)

Published 18 Apr 2021 in stat.ML, cs.CL, and cs.LG

Abstract: Unstructured text provides decision-makers with a rich data source in many domains, ranging from product reviews in retail to nursing notes in healthcare. To leverage this information, words are typically translated into word embeddings -- vectors that encode the semantic relationships between words -- through unsupervised learning algorithms such as matrix factorization. However, learning word embeddings from new domains with limited training data can be challenging, because the meaning/usage may be different in the new domain, e.g., the word ``positive'' typically has positive sentiment, but often has negative sentiment in medical notes since it may imply that a patient tested positive for a disease. In practice, we expect that only a small number of domain-specific words may have new meanings. We propose an intuitive two-stage estimator that exploits this structure via a group-sparse penalty to efficiently transfer learn domain-specific word embeddings by combining large-scale text corpora (such as Wikipedia) with limited domain-specific text data. We bound the generalization error of our transfer learning estimator, proving that it can achieve high accuracy with substantially less domain-specific data when only a small number of embeddings are altered between domains. Furthermore, we prove that all local minima identified by our nonconvex objective function are statistically indistinguishable from the global minimum under standard regularization conditions, implying that our estimator can be computed efficiently. Our results provide the first bounds on group-sparse matrix factorization, which may be of independent interest. We empirically evaluate our approach compared to state-of-the-art fine-tuning heuristics from natural language processing.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube